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Centrifugal instabilities in finite containers : a periodic model 

By P. HALL? 
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 

Troy, New York 12181 

(Received 25 May 1979 and in revised form 27 December 1979) 

A simplified model problem has recently been suggested by Schaeffer (1980) in order 
to explain the results obtained by Benjamin (1978) in hie investigation of Taylor 
vortices in short cylinders. In  particular Schaeffer reproduces the results obtained by 
Benjamin for cylinders so short that only two-cell or four-cell flows are possible. The 
model given by Schaeffer has artificial conditions imposed on the fluid velocity field 
a t  the end walls. These conditions depend on a parameter a and reduce to the no-slip 
condition when a = 1.  If a = 0 the conditions require that the normal component of 
the velocity and the normal derivative of the tangential velocity vanish at the ends. 
In this case the onset of Taylor vortex-like motion occurs as a bifurcation from purely 
circumferential flow. If a is now taken to be small and positivk, there is no bifurcation 
and the circulatory flow develops smoothly. We shall use perturbations method for 
the case of small a. The imperfect bifurcation problem which we obtain predicts some 
results consistent with those of Benjamin. 

1. Introduction 
In  recent years there have been several investigations of the role of end effects in 

hydrodynamic stability theory. In  particular Benjamin (1 978) has investigated the 
classical Taylor vortex problem in short cylinders. Earlier investigations of end 
effects in connexion with the Taylor problem had concentrated on longer cylinders 
(see, for example, Cole 1976). 

Benjamin discussed the experimental results which he obtained for flows in cylinders 
having the outer cylinder and the end walls fixed. He also discussed the connexion 
between these results and some generic properties of such flows which he predicted. In 
particular Benjamin investigated the question of how many cells can be observed in 
a given experimental configuration at a fixed Reynolds number. Most of the results 
given were for cylinders so short that only two or four cells could be accommodated. 
Some of his experimental results are shown in figure 1 where R is the Reynolds number 
of the flow and L is the non-dimensional length of the cylinders. 

Benjamin found that if the Reynolds number R is slowly increased from zero, then 
the initial flow has two cells if L < LT and four cells if L < L8. Moreover, this flow 
develops smoothly when R is increased until wavy modes occur as secondary bi- 
furcations from the primary flow for R - lo3. If the point (L,  R) lies to the right of the 
curves I or 11, then secondary modes with two-cell or four-cell flows are possible 
depending on whether L > Lt or L < Lf . Such flows cannot be obtained by increasing 
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FIGURE 1. Results from Benjamin’s (1978) experiments. 

the Reynolds number slowly from zero. Now suppose that L lies in the range ( L f ,  L,*) 
and the Reynolds number is again slowly increased from zero. The primary flow now 
loses its stability to a secondary axisymmetric mode when CB is crossed. However, if, 
after the latter mode has been established, the Reynolds number is decreased the flow 
does not jump back to the primary flow until CD is crossed so that the flow exhibits 
a hysteresis phenomenon. We further note that another stable secondary flow is 
possible if (A,  R) lies to the right of I with Lf < L < L,*. This secondary flow has four 
cells and is described by Benjamin as a stronger version of the primary flow possible 
for (L, R) lying just to the left of CB. 

In  addition to the above symmetric modes, Benjamin found secondary modes with 
an add number of cells. In recent papers, Blennerhassett & Hall (1979) and Hall (1980) 
have discussed the linear and nonlinear stability of a simplified model of Benjamin’s 
experiments. The model allowed the end walls to rotate in a manner such that the 
circulatory part of the primary flow driven by the ends was weak. This was done by 
specifying that at the end walls the fluid velocity in the azimuthal direction was close 
to the value if would have if the cylinders were infinite. The other velocity components 
were set equal to zero at the end walls. It was found by Blennerhassett & Hall that, 
at a given value of L, an infinite countable set of possible flows could exist, each having 
a different number of cells which could be odd or even. In  general, the Taylor numbers 
a t  which these linear modes first occur are different but, for certain values or L, the 
Taylor numbers of the first odd and even modes coincide. A nonlinear calculation to 
determine the preferred flow in a neighbourhood of such points was given by Hall. It 
was found that the primary flow always had an even number of cells but that, in certain 
cases, secondary bifurcations to flows with an odd number of cells could occur. Hall 
also showed how, by taking the limit L + co, results consistent with those for the 
infinite problem are obtained. 

Schaeffer ( 1  980) has given an alternative simplified model of the experiments of 
Benjamin in an attempt to reproduce the results of figure 1.  Schaeffer assumed that 
u, v, w, the radial, azimuthal, and axial velocities of the flow, satisfied the following 
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conditions a t  the end walls 

( 1.1 a, b,  c) 

where a is a homotopy parameter satisfying 0 < a < 1 and a/& denotes the normal 
derivatives. 

If we set a = 1 the above conditions reduce to the no-slip condition appropriate to 
Benjamin's results. If a = 0, we obtain a simpler problem which leads to a linear 
stability problem for a finite region which we solve by using a single solution of the 
corresponding infinite problem. Schaeffer argues that by then obtaining results for 
the case a > 0, a < 1, we can infer results for the case a = 1. 

Using singularity theory, Schaeffer argues that the results of figure 1 are plausible. 
However, as stated by Schaeffer, the analysis he gave is valid only for the 2m, 2m + 2 
cell interaction problem with m 2 2 .  Moreover, the coefficients in the bifurcation 
equations obtained by Schaeffer had to have certain properties in order that the equa- 
tions could describe the results of figure l. The actual values of the coefficients were 
not calculated by Schaeffer. 

In  this paper we shall investigate the model proposed by Schaeffer but applied to 
the 2- and 4-cell interaction problem. This will be done by asymptotic methods. We 
shall see that the bifurcation equations investigated by Schaeffer are quite different 
than those appropriate to this problem. We shall show 'that, in sufficiently long 
cylinders the primary flow develops smoothly and is a four-cell flow, whilst the same 
result holds for a two-cell primary flow in sufficiently short cylinders. We shall also 
use our nonlinear calculation to generate curves corresponding to the curves BC and 
BA of figure I ; we are unable to predict the phenomenon associated with the curve 
CD in figure 1. The procedure adopted is as follows. In  $ 2 we shall formulate the stabi- 
lity problem for the model of Schaeffer but applied to the so-called narrow gap limit. 
I n  $ 3 we shall find the possible flows in a region of order a4 around a point correspond- 
ing to B in figure 1. Some of these solutions break down in a region of order a3 near the 
curve BA. The development of these solutions in this region is determined in $4. I n  
$ 5 we investigate the flows possible when (R,  L )  differs by an amount of O( 1) from the 
co-ordinates of the point B in figure 1. Some discussion of the wide gap problem is also 
given in $ 5, and our conclusions are summarized in fj 6. 

2. Formulation of the problem 
We investigate the flow of an incompressible fluid of kinematic viscosity v between 

concentric circular cylinders of length 2Ld and radii €2, and R, + d .  The inner cylinder 
rotates with angular velocity Q whilst the outer cylinder is held fixed. We shall 
assume that d / R ,  < 1 so that  the small gap approximation can be made. 

We follow Hall (1 979) and define dimensionless variables x and 4 by 

x = (r - R,)/d,  q5 = z /d ,  (2.1 a, b )  
where ( r ,  8, z )  are cylindrical polar co-ordinates with r = 0 and z = 0 corresponding to 
the axis and the plane midway between the ends of the cylinders respectively. The 
cylinders are taken to be rigid so that the velocity of the fluid satisfies 

(u, V, W )  = (0, QR,, 0) ,  

(u, v, w) = ( O , O ,  O ) ,  

x = 0. (2.2) 
x = 1.  

19 F L M  99 
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Following, Schaeffer, we now impose the conditions 

au av 
an an 

(l-a)-+au = 0, (1-a) -+av = 0, w =  0 on 9 = +A.  (2.3a,b,c) 

Here a/& denotes the normal derivative whilst a is a fixed constant. If a = 1 the 
conditions (2.3) reduce to the no-slip conditions appropriate to the experiments of 
Benjamin whilst if a = 0 they reduce to 

(2.4a, b, c )  

The boundary conditions enable us to make some analytical progress in determining 
the flow between the cylinders. If we now choose a! such that 0 < a < 1, then we can 
at least hope that the results obtained for the perturbed problem shed some light on 
the problem with a = 1. We note that the conditions (2.4) lead to a basic flow 

(u, v, w )  = QR,(O, 1 -2, O ) ,  (2.5) 

which is just the basic circumferential flow of the corresponding infinite problem. 
We define a Taylor number T by 

T = 2Qi R0d3/v2, 

T* = - t  
a 2  ’ 

and a time variable T* by 
V 

For the moment, we assume that a = 0 and perturb the basic flow axisymmetrically 
such that the disturbed velocity field is 

Q R ,  - V  
Q R , ( l - X ) + ~ v ,  % W ) .  

We can show from the momentum and the continuity equations by performing the 
usual manipdations that u, v, w satisfy 

u, + W$ = 0, 

a 2  a 2  

ax2 a p ,  

where the operator 1 is defined by 

l=-+- 

( 2 . 8 ~ )  

and Q, = UU,+WU$-$TV~, Q2 = uw,+ww+, Q3 = uv,+wv$. (2.9a,b,c) 

Following Schaeffer, we consider flows which are symmetric about the plane z = 0. If 
we neglect the nonlinear terms in (2.8) and write 

(2.10) 
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then (a,, vn) is determined by the eixth-order ordinary differential system 

579 

For a given value of T ,  there is an infinite set {k,} of eigenvalues of the above system. 
[See Blennerhassett & Hall (1979) for a more detailed discussion of these eigenvalues.] 
If T is greater than its critical value T, of the infinite problem, then there will be a t  
least four real wavenumbers kk,, +k, and we choose to order them such that 
0 < k, < k,. The remaining eigenvalues are ordered on the basis of the nature of the 
corresponding eigenfunctions in the manner suggested by Blennerhassett & Hall. 

The disturbance given by (2.10) must now be made to satisfy the end conditions 
given by (2.4). However the reason for the choice of end conditions now becomes 
apparent, since (2.4) is satisfied if 

k,L = mn, m = 1 ,2 ,3 ,  ..., (2.12) 

and the flow field then has 2m cells in I - L,  L).  Thus the conditions (2.4) are satisfied 
by a single axial mode in contrast to Blennerhassett & Hall where all the axial modes 
were required to satisfy the end conditions. Since the wavenumber k, depends on T ,  
it follows that (2.12) specifies an eigenrelation T = T,, = T,,(L). At a point of 
intersection of the eigencurves T,, = T,,(L), T j  = %.j(L), two possible types of dis- 
turbance with 2m and 2i cells respectively exist. Our concern here is with the point of 
intersection of the m 1 and m = 2 curves obtained from the eignenvalues k, and k,. 
(Note that  the curves T,, = T,,(L), Tm2 = T,,(L) join smoothly when T = T,.) This 
point of intersection corresponds to the value of the Taylor number a t  which 

k, = 2k,, 

and by solving (2.11) numerically we find that in this case 

k, = k = 2.17, k, = 2k, T = T* = 4010. (2.13 a ,b, c )  

The corresponding value of L is then given by 

L = L* = 1.45. (2.14) 

For convenience we shall denote the Taylor numbers corresponding to the two-cell 
and four-cell modes by P,(L) and ?4(L) respectively. These curves are shown in figure 
2 and we note that, in each case, the parts of the curves lying to the right and the left 
of the minimum point correspond to the wavenumbers k, and k, respectively. The 
curves intersect a t  the point J .  We note that the two-cell mode is the most dangerous 
for L < L*, otherwise the four-cell mode is the most dangerous. We shall now con- 
struct weakly nonlinear solutions of (2.8) valid in the neighbourhood of J .  This 
nonlinear analysis will enable us to identify J with the point B in figure 1.  

3. Weakly nonlinear solutions for (T-T*)  - (L-L*) - at 
We are concerned here with the nodinear development of the two linear modes 

with wavenumbers k and 2k. If these modes interact once with each other then each is 
19-2 
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FIGURE 2. The neutral curves for the two-cell and four-cell modes. 

reinforced. If a = 0 such unforced solutions can be constructed in a neighbourhood of 
(L*, T*). However, we shall determine how these modes can be forced b3 the end con- 
ditions when a -+ 0. 

Suppose that (T, L )  is perturbed by an amount of order aP’ from its value (T*, L*) 
a t  J, the point of intersection of the curves T = P2(L), T = p4(L). Since one interaction 
of the fundamental modes given in $ 2  reinforces these modes, we expect a finite 
amplitude solution of the unforced problem to be O(aJ) .  However if a -+ 0, the con- 
ditions on the disturbance velocity field (a, v, w) at # = k L become 

, w = O  on # =  + L ,  au 

( 3 . l a ,  b, c )  

so that the forced motion will resonate for (T - T*) - O(a)b and will be of order al-8. 
Thus a balance between the resonating solution and the nonlinear solution is achieved 
if we choose f i  = 1 / 2 .  We therefore expand u = (u, v, w), T, and L in the forms 

u = a*U,+aU,+a+U,+ ..., ( 3 . 2 ~ )  

T = T * + c c * T ~ + ~ T ~ +  ..., (3 .2b )  

L = L*+a*L,ia~,+ ..., ( 3 . 2 ~ )  

and define a slow time scale 7 by 

7 = ab*. (3 .3 )  

We assume that the coefficients in the expansions (3 .2b ,  c )  are given together with a 
and this specifies L and T. The coefficients in the expansion ( 3 . 2 ~ )  are functions of 
4, a and 7 which we can obtain by equating like powers of a* in (2 .8 )  after substituting 
for u, T from ( 3 . 2 a ,  b )  and replacing a/&* by a* a / h .  At order a* this procedure leads 
to a linear partial differential system for U, which, when solved subject to the appro- 
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priate boundary conditions, gives 

where (ul, vl), (u2, v2) are the eigenfunctions associated with the wavenumbers k and 
2k whilst A(T) and B(T) are amplitude functions to  be determined a t  higher order. 

At order a we obtain a partial differential system for U, which, ignoring the end 
conditions, has the solution 

i 
$ sin k$u, 

q5 sin k$vl 
[k$ cos k$ - sin I%$] 

k2  u; 

(:) = - ( e l g + G , T , A + y l A B  

w, 

iq5 sin 2k$u2 \ 

cos k ,  $un 
terms proportional to  

and terms independent of $ 
sinnk$, cosnk$, n = 1,2,3,4 

n=3 

For the sake of brevity we do not give explicit forms for the terms in the curly brackets 
since they automatically satisfy the required conditions at $ = + L. In fact the $- 
dependent terms not shown explicitly are determined by inhomogeneous forms of 
(2.1 1 )  with k ,  = nk and comprise terms proportional to dA/dT,  dB/dT,  A,  B, A2 and 
AB. I n  addition there is an azimuthal mean flow velocity field proportional to A2, 
B2. The constants el, ez, etc. appearing in (3.5) are defined by 

u , + [ ~ ~ - k ~ ~ u , ] + v ~ v , d x  A;l,  n = 1,  2,  (3.6a) 

(3.6b) 

en = ( -Io’ I 
8, = ( k i I o l u i  [l - x ] v n d x  A l l  n = 1,  2,  I 

Here (u i ,  v t )  is the function pair adjoint to (u,, v,) whilst A,, H ,  G, C, D are given by 

( 3 . 7 ~ ~ )  A, = IO1 {2k,vk v,  + 4u:[urL - kiu,]k,  - 2T*( 1 -2) k,v,u,i} d z ,  

U”U’ - u UllI 

2 
1 2  1 2  + ul” u2 - u;u;, (3.7 b )  

(3.7c) 

c = 2 k 2 T * v f + 2 ( u l u ~ - u ; u ; ) ,  ( 3 . 7 d )  

D = +ulV;-UU;Vl .  (3.7e) 

H = - k2{ - T* v1 v2 + $ulu; + ~u;u,} + 
G = ulv;  + u2v; + 2 4 v 2  + +u~v,, 
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The constants {pn}, n = 3, 4 ,  . . . , must now be chosen so as to satisfy the end condi- 
tions. In  view of the symmetry of the flow about q5 = 0, we need only consider the 
conditions at $ = L, which from (3.1), (3 .2) ,  (3.4), and (3.5), give 

-xu,+*yu;+- ka 2 "" Pn -sink,L*u,: = 0. 
n n=3kn 

Here the coefficients X and Y are defined by 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

(3.9~) 
dA k2 
dr n 

X = €1 - + 81 AT, + 71 AB1+ --LIA, 

dB 2k2 
Y = ~2-+$2BTl+~2A2+-LlB. 

dr  71 
(3 .9b)  

The above equations must be satisfied at every value of x in (0, 1 ) .  We note that, since 
v,(O) = 0, we cannot satisfy (3.8b)at x = Oand hencewe expect Gibb'sphenomenon to 
occur. The eigenfunction pairs (ul, vl) and (u2, v2) were normalized such that u[(l) = 
uT(1) = 1, in which case ul (x ) ,  u2(x) are both negative in (0, 1 ) .  The equations (3.8a, 
b,c)  are now multiplied by sinmnx, m = 1, 2, ..., M and integrated from x = 0 to 
x = 1. If we set pn = 0 for n > 3M, such a procedure gives 3M equations for the 
3M unknown quantities X ,  Y,{,u,J, 3 < n < M .  If the eigenvalues are ordered in 
the manner suggested by Rlennerhassett & Hall, such a procedure gives values for 
X and Y which converge quickly when M increases. The results obtained by taking 
M = 2 ,  4, ..., 10 are shown in table 1. We note that the coefficients X, Y ,  etc. could 
also be obtained by collocation methods but, as found by Stewartson & Weinstein 
(1979), the discontinuity a t  x = 0, leads to an oscillation in the value of (X, Y )  when 
more collocation points are used. 

The remaining coefficients in (3.8) were also calculated numerically and the results 
obtained are shown in table 2 .  For convenience, using the values given in table 1 
(for M = 10) and table 2, we can write the amplitude equations for A and Bin the form 

( 3 . 1 0 ~ )  
dA 
- = (rlA{Tl-~lLl)+elAB+fl, dr 

_ -  - ~2B{T1-52L1}+e2A2+f2. (3.10 b )  
dB 
d7 

The constants (r1, u2, etc. appearing in (3.10) are given in table 3 
We note that the nonlinearity of the above equations is quadratic. This is in contrast 

to the corresponding equations given by Schaeffer (1979) which describe the inter- 
action of 2 m  and 2 m  + 2 cell modes for m 3 2.  The equations governing the interaction 
in the latter case have only cubic nonlinear terms. 
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M X Y 

2 8.6 13.0 
4 7.7 11.8 
6 7.4 11.4 
8 7.4 11.3 
10 7.4 11.3 

TABLE 1 

n Efl an Yfl 
1 0.24 - 0.00063 - 0.000047 
2 - 0.24 0.001 0.00084 

TABLE 2 

n Qn t n  en f n  

I 0.0026 2400 0;0002 31 
2 0-0042 - 3000.0 0-0035 - 47 

TABLE 3 

Solution of the amplitude equations 
We first consider the solution of (3.10) obtained by setting f, = fi = 0 in which case 
there is no motion forced by the end-wall boundary conditions. The equilibrium 
solutions of (3.10) are then given by 

1. A = B = O ,  
2. B = -gl{Ti-CiLi}eil, 
3. A = 0, B undefined, T, = C,L,. 
The first solution exists for all values of T, and L, whilst the second mixed mode 

solution exists only when (Ti - clLl) (T, - C, L,) 2 0. Thus, for a given value of L, the 
latter mode exists if the Taylor number is less than the minimum or greater than the 
maximum of the critical Taylor numbers for the 2-cell and 4-cell modes. In  addition 
to the solutions 1 and 2, there is a further solution given by 3. The stability of the equi- 
librium solutions shown above can be determined in the usual way by determining the 
growth rates of small perturbations to these solutions. The results obtained are shown 
in figure 3 and 4 for L, > 0 and Ll < 0. We see that the zero solution is stable only for 
T, < min(c,L,, C,L,) whilst the mixed mode solution 2 is always unstable. The 
solution 3 is unstable for B > cr,e;l {Cl Ll - c2 L,) and neutrally stable for 

A = +{[Ti-CiL1I[Ti-C2~1I~i~z/eiez}'  

B g1 e;l (C1L1- CZLlb 
We now return to the case when fi and f2 have the values given in table 3. If T, $; C, L, 

(3.1 1 a)  

(3.1 1 b )  

we can then show that the equilibrium solutions of (3 .10)  satisfy 

6162 A3 + A [ e l f 2  - gi gz(T1- LLi) (Ti - C2LJl- fi g z  [Ti - C2LJ = 0, 

B = - [fz + eZA21/[~,(T1 - CZLl)I, 
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FIGURE 3. The solutions of (3.10) for L, > O,f, = j 2  = 0. -, stable solutions ; 
.-.-. , neutrally stable solutions ; ---, unstable solutions. 

so that, depending on T, and L,, either one or three equilibrium solutions exist. The 
nature of the solutions given by (3.11 a, b)  is shown in figures 5 and 6 for L, > 0 and 
L, c 0 respectively. 

We first discuss the solutions shown in figure 5 which corresponds to the case when 
the 4-cell mode is the most dangerous mode of linear theory. The only stable branch 
is I which represents the smoothly developing primary flow. For all values of Tl 
on I we have A =- 0 and B < 0 so that the flow at the ends of the cylinders is always 
inwards as reported by Benjamin for the primary flow. However when Tl -+ c2 Ll we see 
that the flows corresponding to I and IV become unbounded and a more careful 
examination of (3.10) shows that for Tl - &L,, 

(3.12a, b )  

and the above solution is unstable for TI - c2 L, > 0 and stable for Tl - L, < 0. 
This suggests that near T, = c2L1 there is an inner region in which the solution 
develops such that B B A .  In fact in $4 we see that this region is of thickness af 
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FIGURE 4. The same as figure 3 but with L, < 0. 

and the stable resonating solution shown in figure 5 remains stable. We conclude 
that if L > L* + 0*016a*, the primary flow develops smoothly and is always a four- 
cell mode with flow inwards a t  the end walls. 

Now suppose that we have L, < 0 so that according to linear theory the two-cell 
mode is the most dangerous.? We now see in figure 6 that  the smoothly developing 
primary flow loses its stability when Tl = ql. In  this neighbourhood there is no other 
stable solution given by the present theory so we expect that, as Benjamin observed, 
the flow adjusts to some new secondary mode. However when Tl = Tc2 the branch 
IV  appears and is now a stable mode. This solution has the same asymptotic structure 
as given by (3.12) for (T,- C2;2L2) < 0 and small so that it corresponds to a four-cell 
mode again with radial inflow a t  the end walls. Clearly the branches I and IV  will 
give similar flow patterns since they collapse into I of figure 5 when L, is increased 
through zero. We further note that since B changes sign on I for TI < Tcl, the primary 
flow can be either a two-eel1 or four-cell flow depending on Tl. For the values of fl 

t Note that this description also applies for 0 < L, < 0.016 where the four-cell mode is the 
most dangerous linear mode. Furthermore, when L, = 0.016 the branches corresponding to I, 
11, IV  and V meet and then T c l =  T c 2 =  - 60. 
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FIGURE 5. The solutions of (3.10) for L, > 0.016. -, stable solutions; ---, unstable 
solutions; . . . ., the finite amplitude perfect solution. 

and f, given in table 3, the values of T,, and T,, were calculated for L, = - 0.1 and we 
found that 

Thus T,, is decreased from the linear critical value cl Ll whilst q2 is indistinguishable 
from the linear critical value c2 Ll. 

We recall that  the problem most relevant to experimental observations is that with 
a = 1 in which case the flow satisfies the no-slip condition a t  the end walls. The theory 
which we have developed in this section is formally valid only in the limit a -+ 0. The 
radius of convergence of the expansions which we have developed can only be deter- 
mined by proceeding to higher order in the expansions. Thus it is not clear that our 
results obtained for a < 1 are relevant to the case a = I .  

Nevertheless we now set a = 1 and compare the predictions of our theory with the 
observations of Benjamin (1978). Suppose then that L < L* and we use the nonlinear 
theory above to  predict the Taylor number a t  which the primary flow loses its stability 
together with the Taylor number a t  which the stable secondary four -cell mode emerges. 

T,, = 2.9 x lo2, T,, = 3.0 x 10%. 
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FIGURE 6. The same as figure 5 but with L, < 0.016. 

By varying L we can construct the curves C, and C, shown in figure 7 which, when 
crossed by increasing the Taylor number, predict the appearance of a stable four-cell 
mode and the disappearance of the primary flow respectively. We note the similarity 
of these curves with the curves BA and BC from figure 1 which we recall describe the 
same phenomena found experimentally by Benjamin. Since our theory is only valid 
for the small gap limit, a more accurate comparison with the experimental results is 
not possible. However, we shall return to this point in $ 5 .  

4. The nonlinear development of the resonating solutions 
We have seen in $ 3  that  if TZ, T,* represent the linear critical Taylor number for 

the four-cell and two-cell modes correct to order at, then four- and two-cell modes of 
amplitude a/ (T  - q*) and T - TZ respectively develop for T - TZ. Thus the quadratic 
nonlinearity of the amplitude equations (3.10) is not sufficient to prevent the reso- 
nance due to the forcing of the four-cell mode by the end conditions. It is of interest 
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FIGURE 7. The curves C, and C,. 

to note that, as found by Hall (1979) this resonance would be avoidea if (3.10b) 
contained a quadratic term proportional to B2. We shall now show how the resonating 
solution develops in an interval of width a3 about TZ- 

The asymptotic structure given by (3.12) shows that B $ A in such an interval so 
we assume that the four-cell and two-cell modes have amplitude of order a f  and aQ res- 
pectively, where 0 < f < g.  In the absence of the two-cell mode we would expect that 
the resonance of the four-cell mode would be controlled by taking f = 1/3 (see, for 
example, Kelly & Pal 1976; Hall & Walton 1977). In this case the forced motion of 
order a becomes of order a* in an interval of order a% about TZ. Since B $ A we assume 
that the four-cell mode develops in this way and now determine the value of g which 
enables us to develop a consistent perturbations expansion. 

We recall that a single interaction between the two-cell and four-cell modes re- 
inforces the two-cell mode and that this mode is forced at order a by the end walls. In 
order to balance these effects we must therefore choose g such that af+O N a. Hence we 
choose g = Q and expect a two-cell mode of amplitude a%. Thus we expand the Taylor 
number and length in the form 

T = T*+(2Lla#+pla*+..., ( 4 . 1 ~ )  

L = L* +- Lla#. (4.lb) 

We have chosen the order a* coefficient in (4.1 a) to be that corresponding to the order 
a4 term in the asymptotic expansion of Tf in powers of a&. Thus we seek finite am- 
plitude solutions in a region of thickness a% about the critical Taylor number for the 
four-cell mode. Without any loss of generality we assume that all the coefficients except 
the first two in (4.1 b )  are zero. Thus for a given value of (L, a) the coefficient Ll is 
determined by (4.1 b) .  

We now define the three time scales rl, r2, r3 by 

r1 = a+t, r2 = a+t, r3 = a%. (4.2 a, b, c) 
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The first time scale is the one on which the two-cell flow develops due to  its interaction 
with the four-cell mode. The other two time scales are needed because, on the basis of 
linear theory, the two-cell and four-cell modes have growth rates of order a h  and a* 
respectively. However, for the sake of simplifying the analysis, we shall for the moment 
seek only steady equilibrium solutions of the equations of motion. Some discussion of 
the effect of time dependent perturbations to  these solutions will follow later in this 
section. 

We expand u = (u, v, w) in the form 

00 

u = a+ aQnUn(x,z) 

and determine the functions Un in the manner described in $3. If we substitute for 
u from above into (2.8) and use (4.1), we can show that the order a*, at solutions 
satisfying the required end conditions are 

n=O 

(4.3a, b )  

where (u,, v,) is the eigenfunction pair of the linear problem with wavenumber 2k 
and B and C are amplitude constants to  be determined. We note that a t  this stage we 
have not yet allowed for the existence of a two-cell mode since, as argued earlier, this 
mode is of order a*. At order a* we find that U ,  can be written in the form 

Here (ul,vl) is the eigenfunction pair of the linear problem with wavenumber k 
whilst A is another amplitude constant to be determined. The function U,, comprises 
first harmonic terms corresponding to the wavenumber 2k together with mean flow 
terms. These terms automatically satisfy the end conditions and their precise form is 
not essential to the following analysis. 

At order a we find that we obtain an inhomogeneous partial differential system 
which only has a solution if A and B satisfy the equations 

o = e,AB+fl ,  o = ( ~ ~ T ~ i l - - h B 3 + f ~ ,  ( 4 . 5 ~ )  b )  

where the constants el, fi, r,, f 2  are as given in table 3. The coefficient h is determined 
by the integral conditions involving the order a* function U,, together with (u2, v,) 
and its adjoint (u;, v;). I n  fact h is identical to  the coefficient of the cubic term in the 
corresponding amplitude equation of the infinite monochromatic problem with 
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FIGURE 8. The solutions of (4.5). 

wavenumber 2k. It is. well known that bifurcation is supercritical for the infinite 
problem so we can assume that h > 0. 

We now see that the amplitude of the four-cell mode is independent of the amplitude 
of the two-cell mode. Thus at any value of Fl we solve (4 .5b )  for B and then A is given 
by ( 4 . 5 ~ ) .  The solutions of (4.5) are illustrated in figure 8. For large values of ]Tll the 
asymptotic behaviour of A and B along I and I1 is 

B - - f 2 b 2 %  A - f l ~ 2 ~ 1 / e l f z .  (4.6) 

If we replace pl above by (T - T f ) / a )  and PI by (T - T*)/a in (3.12) then, after noting 
that A and B are scaled on a4 in tj 3 whilst they are scaled on a), a* respectively here, 
we see that (4.6) matches with (3.12). Thus the stable resonating solutions of figures 4 
and 5 develop smoothly along I whilst the unstable ones develop along 11. For large 
positive values of Tl the branch I has the asymptotic behaviour 

Thus the four-cell mode grows in amplitude and asymptotes to the equilibrium 
amplitude solution of the infinite problem at the same wavenumber. We see that at 
the same time the two-cell mode becomes even smaller in amplitude. Indeed the asymp- 
totic form (4.7) shows that for T - TZ positive and satisfying a3 < T - TZ < 1 the 
four-cell and two-cell modes have amplitudes (T - T:)* and a/(T - T,*) respectively. 
In  particular if T - TZ - O ( d )  there is an equilibrium configuration with two-cell 
and four-cell modes of respective amplitudes a2 and a$. We recall that the unstable 
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solutions determined in $ 3  in this region had amplitude of order a). We now turn to 
the question of the stability of the solutions shown in figure 8. 

Suppose that we now allow the amplitude constants A ,  B and C to depend on the 
time variables T,, T ~ ,  r3 defined earlier by (4.2). It is easily shown that B can depend 
on T~ only and then (4.5b) becomes 

dB/dr3 = u2Fl B - hB2 + fi. 
If we perturb the equilibrium flow by a small amount bears then we find that the growth 
rate (r of this perturbation is given by 

u = (a2Fl-2hB2) 

where B is the equilibrium solution determined by ( 4 . 5 b ) .  It follows that the solutions 
represented by I and I11 in figure 8 are stable whilst I1 corresponds to an unstable 
solution. 

However if we allow A to depend on T,, T ~ ,  T~ then (4.5~) becomes 

aA/a?, = e,AB+ f,. 

Thus if ( A ,  B )  is perturbed by a small amount (aeuT1,O) from its equilibrium value 
given by solving (4.5) it  follows that u is given by 

cr = e,B, 

so that the solutions represented by I1 and I in figure 8 are respectively unstable and 
stable to such perturbation. Thus it follows that only I can possibly correspond to 
stable equilibrium flows. We can only show the stability of I by investigating the 
stability of A ,  B and in fact C and the other higher-order amplitude functions to 
perturbations dependent on r,, r2, T ~ .  Such a procedure leads to an infinite set of 
coupled linear partial differential equations to determine the stability of the equili- 
brium flows. We do not pursue such a formidable procedure here but, since I matches 
onto the stable solutions of $ 3  and no secondary bifurcations occur, we can be reason- 
ably certain that I is stable for all F,. 

The above discussion enables us to give the following picture of the development of 
the Taylor vortex flow in cylinders of length O(L* +a* L,) when the Taylor number is 
increased. 

Suppose firstly that L, is positive so that the four-cell mode is the most dangerous 
linear disturbance. If T < T* then there is a weak circulatory flow with amplitude a. 
However when T is increased further resonanceoccursfor T < TZ with T - Tf - O(a*). 
The flow now consists of two-cell and four-cell modes of amplitude a*. This flow has 
radial inflow a t  the ends and is the stable primary flow. However the four-cell mode 
becomes dominant when T is increased further. Thus in a region of order a# about TZ 
the four-cell mode is of order a+ whilst the two-cell mode is of order 018. Moreover when 
T is increased further such that T > Tf with a3 6 T - TZ < 1 the two-cell and four-cell 
modes have amplitude of order (T - TZ)* and a/(T - T,*)*. At this stage the four-cell 
mode has amplitude apparently independent of end effects. However, the end effects 
have selected to which solution of the infinite problem the primary fluid evolves in 
this Taylor number regime. 

Now suppose that the value of L, chosen is negative so that TZ < TZ. The descrip- 
tion given above remains valid until T < T l  with T - TZ - O(a*). The smoothly 
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developing primary flow now loses its stability and there is no other stable solution 
predicted by our theory. However, when T is increased further such that T < TZ 
with T - T$ N O(a4) a stable secondary mode appears. The development of this mode 
in the neighborhood of T = T4*, is then identical to that described above for the primary 
flow. Thus in the regime T > Tp* with a8 < T-T:  < 1 the flow is dominated by a 
four-cell mode of amplitude (T-T,*)*. Furthermore this flow is to first-order in- 
distinguishable from that  to which the primary flow evolves for L, positive. 

5. Weakly nonlinear theory for (T-T*)  N (L- L*) - O ( 1 )  and the finite gap 
problem 

In  $9 3, 4 we have determined the nonlinear development of the circulatory flows 
driven by the end-wall conditions when the length of the cylinders is close to the 
critical length 2L*. We shall now show how we obtain t,he corresponding development 
when L - L* - O( 1 ) .  For the sake of definiteness we assume that  L is such that L < L* 
so that  P,(L) < g4(L) in which case the two-cell mode is the most dangerous. Suppose 
further that  R is the wavenumber corresponding to the point (L,  ?JL)) on the neutral 
curve of the two-cell mode. It follows that 

R = L/n 

and, depending on L, R can be either of the two real positive wavenumbers k, and k, 
which are eigenvalues of (2.1 1). However we order the wavenumbers {k,} such that 
k, = K and k, is the other positive wavenumber. 

If T is an amount O( 1 )  below !?2(L) the forced motion is O(a) and can be solved by an 
eigenfunction expansion in terms of the eigenfunctions of (2.11). However when T - p, 
the part of the solution arising from the eigenfunction with wavenumber K resonates 
and is then or order a/(T - TJ. This resonating solution can be controlled in the usual 
way by balancing this motion with a finite amplitude disturbance of amplitude 
(T - T2)*. This suggests that  we expand the Taylor number in the form 

T = ?JL) + C L ~ T ~  + . . . , (5.1) 

and we then expand u in the form 

u = a+U,+a~U,+U,+ .... (5.2) 

We further define a slow time variable r by 

and we then substitute for T and u from (5.1), (5.2) into (2.8) and replace ; 1 / h *  by 
a3 a/&. If we equate terms of order a* we can show that U, is given by 

(5.4) 
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where X ( 7 )  is an amplitude function to  be determined and ( U ,  V )  is the eigenfunction 
pair corresponding to  the wavenumber K .  At order a3 we obtain a partial differential 
system for U, which we solve to give 

Here the first harmonic function pair (U,,, V,,) satisfies an inhomogeneous form of 
(2 .11 )  with k, = 2n whilst V,, is the usual mean flow correction. The solution (5.5) 
automatically satisfies the required end conditions since K L  = IT. Indeed a t  this stage 
the solution is identical to that which would be obtained for the infinite problem with 
axial wavenumber K and T given by (5 .1) .  

At order a we obtain a partial eifferential Fystem for U2 and if this is solved such that 
the side-wall conditions are satisfied we obtain. 

# sin K#U 
# sin K# V 
K# cos K# - sin K# U ,  

K2 ’ 1 
COB kn #un 
cos kn $6vn 

n=2 

+ {terms proportional to  sin nk#,  cos nk#, n = I ,  3) (5.6) 

where el, 8, are as defined by (3 .6) ,  (3.7) with k, = K .  The constant 8, is determined by 
integral conditions involving ( Ull, GI), V,, and the eigenfunction pair ( U ,  V )  together 
with its adjoint. It suffices for our purposes to  remark that 8, is always negative. The 
constants (pn}, n = 2 ,  3, ... and the coefficient ( E , ~ X / ~ . ~ + S , T , + ~ ~ X ~ )  are then 
determined by requiring that the end conditions are satisfied. This can be done in 
exactly the same way described in 5 3 and we obtain 

s , d X / d ~ + 8 , T l X + B , X 3  = rl, (5.7) 

where T~ is a constant which depends on T2(L). The solutions of this amplitude equa- 
tion are similar to those given earlier for B(7) in 5 4 and shown in figure 8. The primary 
solution is always stable and for T, $ 0 the resonating eolution has amplitude given by 
f ( - 8,Tl ; /~l)~ depending on whether yl is positive or negative. We further note that 
there is a stablesecondary mode corresponding to TI in figure 8. This solution corres- 
ponds to a flow with radial flow a t  the ends in the opposite direction to that correspond- 
ing to the primary flow. However we have shown that if the Taylor number is increased 
slowly with L - L* - O( 1)  a unique stable primary flow with two or four cells develops 
depending on whether L < L* or L > L*. This is precisely the result obtained by 
Benjamin. For certain values of L,  Benjamin found ‘abnormal’ four-cell flows with 
radial outflow near the end walls. The secondary mode corresponding to I1 in figure 8 
could represent such a flow depending on the sign of T ~ .  We have not calculated this 
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constant as a function of L but certainly in the limit L -+ L* we can show from $ 3  
that the sign of rl leads to such a flow. 

The results which we have obtained so far in this paper agree closely with those 
given by Benjamin. However a direct comparison with our theoretical predictions and 
the data shown in figure 1 is not possible since we have used the small gap approxima- 
tion. However we now make an effort to remedy this situation and determine a 
theoretical prediction for the coordinates of the point B in figure 1. 

In  fact to order 010 the point B corresponds to the length and Reynolds number a t  
which the two-cell and four-cell modes are equally likely. We follow the notation 
of Roberts (1965) and define a Taylor number T’ by 

where 7, given by 

is the ratio of the radii of the cylinders. A Reynolds number R for the flow is defined by 

R = Q R ~ / v ,  (5.9) 

R = T’i.$(1-r2). (5.10) 

and we can show from (5.7), (5.9) that 

I f  the cylinders are taken to be of length 2Ld then the point B of figure 1 corresponds to 
R = 123 and L = 1.86. The apparatus used in the experiments of Benjamin corres- 
ponded to 7 = 0.615. The eigenvalue problem for the wavenumbers a’ of linear 
perturbations to the circumferential flow of the wide gap problem has been given by 
Roberts (1965) and is 

(DD*-a’2)2u = -a2T’ - - 1 v, 
(5.11) 

(:2 . )  i (DD* - at2) v = u, 

u = v = D*u = 0, r = 7,l 

Here r is a radial variable scaled on (Ro + d )  and the operators D, D* are defined by 

d d l  
dr dr r ’  

D = - ,  D * = - + -  

The axial wavenumber a’ has been scaled on l / (Ro+d)  and must be determined 
numerically. The point B of figure 1 corresponds to Taylor number T‘ at which the 
two real wavenumbers a; and a6 are such that 

a;/.;; = $5 

and u; and L are then related by 

n L = -  
a ; ( l -q ) .  

The values of a;, L, and R at which this occurs were determined numerically for 
7 = 0.615 which we recall corresponds to the experiments of Benjamin. We obtained 
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R = 126 and L = 1-44. Thus the theroretical prediction for the Reynolds number 
corresponding to B in figure 1 is extremely good, but the predicted value of L is not 
eo good. We presume that the value ofL does not agree so well because of the boundary 
layer structure which exists at the ends of the cylinders in the experimental configura- 
tion. However it is possible that the order a* corrections to the co-ordinates of 3 
might lead to better agreement between theory and experiment. 

6. Conclusion 
The model problem suggested by Schaeffer is indeed able to predict some of the 

results obtained by Benjamin. However the analysis given by Schaeffer is not relevant 
to the experimental situation which he is attempting to describe. It is of interest to 
note that if we had investigated the interaction problems appropriate to a neighbour- 
hood of the point of intersection of the neutral curves of the 2m and 2m + 2 cell modes 
with m 2 2 then the amplitude equations which determine the possible flows would 
have only cubic nonlinear terms. It is known that such amplitude equations can lead 
to hysteresis phenomena (see for example Hall & Walton 1979). Such a result was 
found by Schaeffer in his work if he assumed that the coefficients had certain prop- 
erties but these coe%cients were not evaluated by him. Moreover it is not known 
whether an experimental investigation appropriate to this c&e would lead to results 
similar to those shown in figure 1.  

The development of the forced motion described in $4 3 and 4 is not peculiar to  the 
two-cell and four-cell interaction problem. The development of the forced motion 
which we have described in 5 4 is also relevant to the interaction problem between m 
and 2rn cell flows for m = 1 , 3 , 4 , 5 ,  . . . . However no experimental results are available 
for these cases and in fact it is likely that the only case of physical interest is when 
m = 1.  This seems to be a reasonable assumption in view of the fact that a t  the Taylor 
number and lengths appropriate to the m 2 3 cases other more unstable modes exist. 
We expect that the results of $5 3 and 4 are relevant to other stability problems when 
two linear modes with wavenumbers having ratio fr become unstable a t  nearly the same 
Reynolds number. 

The major deficiency of the present paper is its inability to predict the curve I of 
figure 1.  We recall that when this curve is crossed a stable secondary flow with two 
cells is poseible. There appears to be no suitable scaling leading to such a flow for 
values of L such that ( L  - L*) < 1 whilst for L > L* and (L - L*) = O( 1)  the critical 
Taylor numbers for the two-cell and the four-cell flows differ by an O(1) amount. In 
the latter case the interaction problem cannot be studied by perturbation means and 
is a numerical problem. Thus we feel that the curve I can only be determined by 
numerical means. 

The author is grateful to Professor D. Schaeffer for supplying a preprint of his paper. 
This work was partially supported by the U.S. Army Research Office. 
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